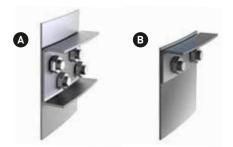


STAINLESS STEEL TANKS CUSTOMIZED AND LASTING VALUE

Börger stainless steel tanks in segmental design are perfect for storing liquids of almost any type.

Börger stainless steel tanks are built to match the volume and the properties of the liquid to be stored. Capacities of 30 to 5,000 m³, various stainless steels and roof constructions as well as diverse accessories allow a customized solution for almost any application.


Due to the segmental design of the tanks, vertical extension is possible without problems. In addition, the tanks can be dismantled – even after years of use – and reconstructed at a different location. The segments are easy to transport (compact) and can also be installed in existing premises.

DURABLE DESIGN

Our stainless steel tanks are designed for a long service life. The thick-walled stainless steel segments are bolted vertically in overlapping double rows.

In the horizontal transition of the segments, special U-profiles **[A]** connect the individual walls to each other. This stabilizes the tank wall effectively.

At the top of the tank, there are all-round resilient bracing profiles [B].

CONSTRUCTION AND FUNCTION

1 Stainless steel segments

The tanks consist of individual segments (1500 mm x 3020 mm) which are fixed to each other with screws. This way, the tanks can be dismantled, if required, and reconstructed at a different location.

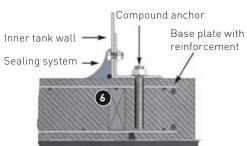
2 Roof construction

A large selection of roof constructions provides the right solution for every application.

3 Working platform

The working platform provides safe and easy access to the adjustment unit of your agitator technology, the service flap or a sight glass. On request, we manufacture the working platform exactly to your specification.

4 Filling and draining pipes


For optimum use, we design the filling and draining system according to your wishes. The tank can be connected to a pipeline system via tank connections [7].

5 Maintenance and service flap

Depending on the use provided, the maintenance and service flap of the required design is attached in the ideal location at the tank.

6 Floor anchoring

The tank is connected to the foundation surface by means of compound anchors and sealed permanently and safely by means of a sealing system.

VERSATILE USE

Thanks to various capacities, materials, roof variations, mixers and other attachment parts, Börger tank systems can be designed such that they are perfectly suited for your application:

- Process water tank
- Sludge tank
- Liquid manure storage
- Aeration tank
- Biogas fermenter or final storage
- Digestion tower
- Storage for liquid feed or moist cereal
- Fire-extinguishing water storage
- Liquid fertilizer storage
- Storage tank for liquids of any type
- etc.

FLEXIBLE ADAPTATION TO YOUR REQUIREMENTS

Depending on the application and spatial requirements, the tank can be constructed with different diameters and heights while providing the same capacity. This allows ideal space utilization and the perfect integration into your work process.

Börger stainless steel tanks can be designed such that they can be extended by additional segment rings any time. This way you can obtain additional storage space easily and cost-effectively, if required.

The Börger standard tank is static-tested and certified which facilitates the approval process.

THE STREET				
	A			
III - LEANING				
and the second second			-	
	Reference which for former laborate and formation for an end of the control of the laboration of the l			
Profbericht	The second secon			1
10.16.000	11 03 12110 11 04 12110		-	
R. 16-009 Single Codel Sectors and Sectors SECTORS AND SECTORS AND		220	164	205
Name and Address of the other	¥*			
Friedlahet der Verster				
	and gives the cost of a flat over a part of a part			
(age Syltenite integ) sice (444				
mater	where we appropriate the second se			

CAPACITIES OF TANKS

Туре	Cyl. height Ø (m)*	Area (m²)	1 1,50 m	2 3,00 m	3 4,50 m	4 6,00 m	5 7,50 m	6 9,00 m	7 10,50 m	8 12,00 m											
											04	3,71	11		32 m³	49 m³	65 m³	81 m³	97 m³	114 m³	130 m³
											05	4,63	17		51 m³	76 m³	101 m³	126 m³	152 m³	177 m³	202 m³
06	5,56	24	36 m³	73 m³	109 m³	146 m³	182 m³	219 m³	255 m³	291 m³											
07	6,48	33	49 m³	99 m³	148 m³	198 m³	247 m³	297 m³	346 m³	396 m³											
08	7,41	43	65 m³	129 m³	194 m³	259 m³	323 m³	388 m³	453 m³	517 m³											
09	8,34	55	82 m³	164 m³	246 m³	328 m³	410 m³	492 m³	574 m³	656 m³											
10	9,26	67	101 m³	202 m³	303 m³	404 m³	505 m³	606 m³	707 m³	808 m³											
11	10,19	82	122 m³	245 m³	367 m³	489 m³	612 m³	734 m³	856 m³	979 m³											
12	11,12	97	146 m³	291 m³	437 m³	583 m³	728 m³	874 m³	1.020 m³	1.165 m³											
13	12,04	114	171 m³	342 m³	512 m³	683 m³	854 m³	1.025 m³	1.195 m³												
14	12,97	132	198 m³	396 m³	595 m³	793 m³	991 m³	1.189 m³	1.387 m³												
15	13,89	152	227 m³	455 m³	682 m³	909 m³	1.136 m³	1.364 m³													
16	14,82	173	259 m³	517 m³	776 m³	1.035 m³	1.294 m³	1.552 m³													
17	15,75	195	292 m³	584 m³	877 m³	1.169 m ³	1.461 m³	1.753 m³													
18	16,67	218	327 m³	655 m³	982 m³	1.310 m ³	1.637 m³	1.964 m ³													
19	17,60	243	365 m³	730 m³	1.095 m³	1.460 m ³	1.825 m³	2.190 m ³													
20	18,53	270	405 m³	809 m³	1.214 m³	1.618 m³	2.023 m³	2.427 m³													
21	19,45	297	446 m ³	891 m³	1.337 m³	1.783 m³	2.228 m³														
22	20,38	326	489 m³	979 m³	1.468 m³	1.957 m³	2.447 m ³														
23	21,30	356	534 m³	1.069 m³	1.603 m³	2.138 m³	2.672 m³														
24	22,23	388	582 m³	1.164 m³	1.747 m³	2.329 m³	2.911 m³														
25	23,16	421	632 m³	1.264 m³	1.896 m³	2.528 m³	3.160 m³														
26	24,08	456	683 m³	1.366 m³	2.049 m ³	2.732 m³	3.416 m³														
27	25,01	491	737 m³	1.474 m³	2.211 m³	2.948 m³	3.684 m³														
28	25,94	528	793 m³	1.585 m³	2.378 m³	3.171 m³	3.964 m³														
29	26,86	567	850 m³	1.700 m³	2.550 m³	3.400 m³	4.250 m³														
30	27,79	606	910 m³	1.820 m³	2.729 m³	3.639 m³	4.549 m³		1												
31	28,71	648	971 m³	1.942 m ³	2.913 m ³	3.884 m³	4.855 m³														
32	29,64	690	1.035 m³	2.070 m³	3.105 m³	4.140 m ³	5.175 m³														
33	30,57	734	1.101 m³	2.202 m³	3.303 m³	4.404 m ³															
34	31,48	779	1.167 m ³	2.335 m³	3.502 m ³	4.670 m ³															

Special and intermediate sizes possible

MATERIAL VARIETY

To be able to build a tank which is perfectly suited for any type of stored liquid, we offer our stainless steel tanks in various materials.

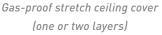
High-quality stainless steels and solid wall thicknesses guarantee a long service life along with maximum lasting value while giving you peace of mind knowing that you have opted for the right tank.

- Stainless steel 1.4301
- Stainless steel 1.4571
- Stainless steel 1.4536
- Duplex stainless steel 1.4162
- Duplex stainless steel 1.4662
- additional materials on request

+ Various capacities of 30 to 5,000 m³ can be selected for the best cost-benefit-ratio

- + Extendable, if required, for flexible and cost-effective storage space expansion
- + High-quality materials and the dismantling option ensure lasting value and flexibility
 - + Versatile use thanks to different sizes, materials and roof constructions
 - + Completely maintenance-free
 - + Can be bolted gas-proof

NUMEROUS ROOF VARIATIONS


Whether you require emission protection, gas-proof sealing or no roof at all – we have the right solution for you.

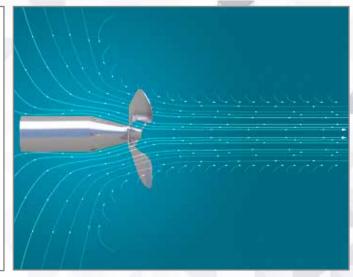
No roof

Stretch ceiling cover (one layer)

Double membrane air-supported roof

GRP roof (cupola roof)

Stainless steel roof



B-MX SUBMERSIBLE MIXER MORE EFFECTIVE AGITATION

The B-MX submersible mixer ensures that stored liquids containing solids are mixed reliably and effectively. Agitation prevents the formation of sinking and floating layers and the liquid is processed optimally.

The compact submersible mixer is very powerful and can be retrofitted into existing systems with ease.

The smooth and streamlined design of the mixer allows liquid to flow to the displacement blades without creating turbulence. This ensures excellent agitation results with minimum energy input.

Börger GmbH | Benningsweg 24 | 46325 Borken-Weseke | Tel: +49 2862 9103-0 | info@boerger.com | www.boerger.com